
原文獻(xiàn):Ali, Z., Vildevall, M., Rodriguez, G.V. et al. Zebrafish patient-derived xenograft models predict lymph node involvement and treatment outcome in non-small cell lung cancer. J Exp Clin Cancer Res 41, 58 (2022).
原文鏈接:https://doi.org/10.1186/s13046-022-02280-x
癌癥患者在治療效果和腫瘤侵襲性方面表現(xiàn)出高度的個(gè)體差異,而這兩方面恰恰是影響腫瘤患者生存的關(guān)鍵所在,因此,準(zhǔn)確預(yù)測腫瘤轉(zhuǎn)移風(fēng)險(xiǎn)和治療結(jié)果對個(gè)體化治療至關(guān)重要[1]。小鼠患者源性異種移植(PDX)模型在預(yù)測治療結(jié)果方面表現(xiàn)出很高的準(zhǔn)確性,但預(yù)測腫瘤侵襲性的方法仍然缺乏。另外,小鼠PDX實(shí)驗(yàn)周期較長,難以滿足臨床個(gè)體化治療的需求[2-4]。
近年來,斑馬魚腫瘤異種移植(zPDX)系統(tǒng)已成為腫瘤學(xué)和腫瘤生物學(xué)研究中一種強(qiáng)有力的體內(nèi)補(bǔ)充系統(tǒng)[5,6]。通過移植腫瘤細(xì)胞系來生成zCDX模型,已經(jīng)使我們對驅(qū)動早期腫瘤擴(kuò)散的分子和病理生理事件[7,8]、腫瘤微環(huán)境內(nèi)的相互作用[9,10]以及對藥物或治療的反應(yīng)[11-13]有了更深入的理解。由于已建立的細(xì)胞系可能隨著時(shí)間的推移而發(fā)生表型變化,這些模型主要用于基礎(chǔ)研究或早期臨床前藥物開發(fā)。為了更好地保持患者腫瘤的特征,研究者成功構(gòu)建了直接移植患者來源的腫瘤樣本的zPDX模型,并證明該模型能夠準(zhǔn)確地反應(yīng)相應(yīng)患者的腫瘤特性[14-19]。
本研究開發(fā)了一種新的、可靠的方法,成功將非小細(xì)胞肺癌(NSCLC)組織植入到斑馬魚幼魚中建立zPDX模型。該zPDX模型準(zhǔn)確地再現(xiàn)了相應(yīng)小鼠PDX模型和患者自身對紫杉醇和厄洛替尼的反應(yīng)。重要的是,該zPDX平臺預(yù)測腫瘤向患者淋巴結(jié)擴(kuò)散的敏感性為91%,而預(yù)測淋巴結(jié)無侵犯的特異性為62%。
● 主要研究結(jié)果
1. 對比凍存的組織與單細(xì)胞懸液,研究結(jié)果顯示凍存的患者組織移植成功率優(yōu)于凍存的患者單細(xì)胞懸液,組織移植成功率高于80%(圖1)。

圖1
2、用25例zPDX模型評價(jià)厄洛替尼和紫杉醇的腫瘤治療效果,結(jié)果顯示厄洛替尼和紫杉醇在zPDX上對NSCLC腫瘤的治療有效率與真實(shí)世界中患者的治療有效率相似(圖2D、E)。與藥物評價(jià)的金標(biāo)準(zhǔn)小鼠PDX模型對比,zPDX對厄洛替尼和紫杉醇的應(yīng)答與小鼠PDX高度一致(圖2F、G)。

圖2
3. 將腫瘤組織進(jìn)行測序分析,對比與藥物治療相關(guān)的靶點(diǎn)后發(fā)現(xiàn),厄洛替尼和紫杉醇在zPDX上的治療效果與基因檢測結(jié)果相似(圖3)。

圖3
4、將發(fā)生轉(zhuǎn)移和未發(fā)生轉(zhuǎn)移患者的腫瘤組織移植至斑馬魚,實(shí)驗(yàn)結(jié)果顯示zPDX模型預(yù)測腫瘤向患者淋巴結(jié)擴(kuò)散的敏感性為91%,而預(yù)測淋巴結(jié)無侵犯的特異性為62%(圖4),提示zPDX模型可準(zhǔn)確預(yù)測患者體內(nèi)腫瘤轉(zhuǎn)移的發(fā)生。

圖4
環(huán)特生物作為斑馬魚技術(shù)應(yīng)用領(lǐng)導(dǎo)者,深度挖掘、創(chuàng)新斑馬魚技術(shù)的應(yīng)用場景,在原有斑馬魚CDX模型用于抗腫瘤藥物藥效評價(jià)的基礎(chǔ)上,成功建立多種實(shí)體瘤斑馬魚PDX藥敏評價(jià)體系,實(shí)現(xiàn)臨床應(yīng)用,為患者提供精準(zhǔn)的用藥指導(dǎo)。同時(shí),我們積極進(jìn)行基于真實(shí)世界腫瘤患者的臨床研究,聯(lián)合浙江大學(xué)附屬第二醫(yī)院開展全世界首個(gè)胃癌斑馬魚PDX與患者治療效果的一致性評價(jià)項(xiàng)目(Clinical Trials注冊號:NCT05616533,為斑馬魚PDX的臨床應(yīng)用提供更加充分的科學(xué)依據(jù)。
參考資料:
1. Eberhardt WE, et al. 2nd ESMO Consensus Conference in Lung Cancer: locally advanced stage III non-small-cell lung cancer. Ann Oncol. 2015;26:1573–88.
2. Hidalgo M, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013.
3. Schueler J, et al. Patient derived renal cell carcinoma xenografts exhibit distinct sensitivity patterns in response to antiangiogenic therapy and constitute a suitable tool for biomarker development. Oncotarget. 2018;9:30946–61.
4. Schueler J, et al. Induction of Acquired Resistance towards EGFR Inhibitor Gefitinib in a Patient-Derived Xenograft Model of Non-Small Cell Lung Cancer and Subsequent Molecular Characterization. Cells. 2019;8(7):740.
5. Rouhi P, et al. Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc. 2010;5:1911–8.
6. Xiao J, Glasgow E, Agarwal S. Zebrafish Xenografts for Drug Discovery and Personalized Medicine. Trends Cancer. 2020;6:569–79.
7. Liu C, et al. A Zebrafish Model Discovers a Novel Mechanism of Stromal Fibroblast-Mediated Cancer Metastasis. Clin Cancer Res. 2017;23:4769–79.
8. Svensson S, et al. CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer. Clin Cancer Res. 2015;21:3794–805.
9. Vazquez Rodriguez G, Abrahamsson A, Jensen LD, Dabrosin C. Estradiol Promotes Breast Cancer Cell Migration via Recruitment and Activation of Neutrophils. Cancer Immunol Res. 2017;5:234–47.
10. Vazquez Rodriguez G, Abrahamsson A, Jensen LDE, Dabrosin C. Adipocytes Promote Early Steps of Breast Cancer Cell Dissemination via Interleukin-8. Front Immunol. 2018;9:1767.
11. He X, et al. Visualization of human T lymphocyte-mediated eradication of cancer cells in vivo. Proc Natl Acad Sci U S A. 2020;117:22910–9.
12. Kabakci Z, et al. Pharmacophore-guided discovery of CDC25 inhibitors causing cell cycle arrest and tumor regression. Sci Rep. 2019;9:1335.
13. Selvaraju K, et al. Cytotoxic unsaturated electrophilic compounds commonly target the ubiquitin proteasome system. Sci Rep. 2019;9:9841.
14. Fior R, et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci U S A. 2017;114:E8234–43.
15. Gaudenzi G, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine. 2017;57:214–9.
16. Gaudenzi G, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine. 2017;57:214–9.
17. Wu JQ, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J Exp Clin Cancer Res. 2017;36:160.
18. Lin J, et al. A clinically relevant in vivo zebrafish model of human multiple myeloma to study preclinical therapeutic efficacy. Blood. 2016;128:249–52.
19. Costa B, et al. Developments in zebrafish avatars as radiotherapy sensitivity reporters - towards personalized medicine. EBioMedicine. 2020;51:102578.